

Potential Reductions in GHG Emissions from Selected Industries in California

David L. Wagger, Policy Analyst
Matthew Ogonowski, Policy Analyst
Center for Clean Air Policy

California Energy Commission January 18, 2005

Presentation Overview

- Big Picture of CA GHG Emissions
- CA Cement Production (CO₂)
- CA Petroleum Refining (CO₂)
- CA Dairy Farms (CH₄)
- Policy Options and Issues for CA Industrial Sector
- Conclusions

Cement Production Overview

- Raw materials are ground and blended and then fed to a long (200–500 feet), slowly rotating cement kiln.
 - > 77% limestone (CaCO₃), 11% cement kiln dust (CKD), 6% aluminous, 5% siliceous, 1% ferrous
- Raw materials are converted to clinker in the kiln at ~2700°F.
 - 1.7 metric ton of raw material per 1 metric ton of clinker
 - Fuels (US): 74% coal, 16% pet. coke, 4.2% natural gas, 3.6% tires
 - \triangleright CO₂ from fuels and calcination (CaCO₃ ⇒ CaO + CO₂↑)
- Clinker is then cooled for subsequent cement production.
- Typically, clinker (~95%) and gypsum (~5%) are ground together in the finish mill to make (portland) cement.
- Clinker/cement chemistry is very important to cement performance, which sets operational limits.

CA Cement Production Overview

- 11 cement facilities in CA: 3 North (3 kilns); 8 South (17 kilns)
- All 20 kilns use dry processes (less energy-intensive than wet).
- ~4 MMTCO₂ from fuel in 2003 (CCAP)
- ~6 MMTCO₂ from calcination in 2003 (CCAP)
- ~42 TBtu consumed for CA clinker in 2003 (CCAP)
 - > 1.3 million tons coal (31 TBtu) (actual 2003)
 - > 220,000 tons pet. coke (5.4 TBtu) (actual 2003)
 - → 4.5 million tires (~1.2 TBtu) (actual 2001; latest)
- ~1,700 GWh consumed for clinker/cement in 2003 (CCAP)
 - > 175 GWh self-generated from waste heat (actual 2003)
 - > ~0.7 MMTCO₂ from average grid electricity (est. 2003; electricity CO₂)

Key Assumptions in CA Cement Analysis

- Clinker/cement baselines projected from recent CA data (USGS)
- Fuel/electricity consumption from comparable US data with some adjustments for CA (e.g., tires, natural gas, and electricity)
- Clinker and cement production after 2005 increasingly efficient
- EE measures applied individually at total technical potential in 2005 at 2005 capacity and production for energy savings during 2006-2025
 - Energy and CO₂-emission reductions not additive collectively
 - ➤ Likely maximizes CO₂-emission reductions and financial results
- Reductions in fuel consumption taken from all fuel sources (ex. tires)
- Reductions in electricity usage taken from purchased grid electricity
- Financial benefits only from lower operating costs (if any) and lower fuel and electricity costs from 2006-2025 (e.g., no NO_x emission credits)
- Cash flows in 2003\$ discounted back to 2005 at 7% annually

EE Measures Considered for CA Cement

- 23 EE Measures for raw material, kiln, finishing, general operations, and product change using existing technologies, not emerging ones
- Raw Material (4): More-efficient transport; grinding, blending
- Kiln (9): Reduced heat losses, greater heat recovery for reuse and power generation, and fuel switching from coal (i.e., waste tires)
- <u>Finishing (4)</u>: More-efficient grinding and blending
- General (4): Greater preventative maintenance and process control, more-efficient motors and drives
- <u>Product Change (2)</u>: Reduction of clinker content of cement to 65% (blended cement) and improvement in clinker formation with steel slag (CemStarTM), both with associated emissions reductions (e.g., NO_x)

Major Data Issues and Uncertainties in CA Cement Analysis

- Operating data for CA cement plants not plentiful
- Different sources of data inconsistent (e.g., USGS vs. CEC)
- Use of US averages not necessarily valid for CA
- Downtimes required for implementing EE measures uncertain
- Potential significant changes in cement industry within 20 years
 - Future cement performance standards likely to favor blended cement
 - ➤ Expiration of CemStarTM license expected around 2014 with uncertain industry reaction
- Costs of blended cement and CemStar[™] in CA uncertain
- Emergence of advanced clinker/cement technologies
- Future fuel and electricity prices uncertain

CA Clinker and Cement Baselines

Baseline Fuel Consumption in CA Clinker Production

Baseline Electricity Consumption in CA Cement Production

Baseline Direct (Fuel + Calcination) CO₂ Emissions from CA Clinker Production

Baseline Direct + Indirect CO₂ Emissions from CA Cement Production

Abatement Curve for 2005–2025 Cumulative Direct CO₂ Emissions

Abatement Curve for 2005–2025 Cumulative Direct + Indirect CO₂ Emissions

Synopsis of Abatement Costs and 2005–2025 Cumulative CO₂ Emissions Reductions of EE Measures

EE Measure (#)	2005–2025 Direct CO ₂ (MMT)	2005–2025 Indirect CO ₂ (MMT)	Payback (y)
Raw Material (4 of 4)	0	<1.0	No payback
General (4 of 4)	0.9–1.6	0.2–0.3	<4
Finishing (4 of 4)	0.1–0.7	0	3–13
Kiln (4 of 9)	0.8–1.7	<0.2	1–14
Product Change (2 of 2)	7.3–29.4	(0.3) –(1.4)	No payback
Waste Tires (Kiln)	(0.14)	0	1.5

Conclusions about Potential CO₂ Emissions Reductions from CA Cement

- Cumulative reductions in CO₂ emissions are unlikely to exceed 50 MMTCO₂ from 2005–2025, out of 274 MMTCO₂ of direct emissions from cement production.
- Cumulative reductions of ~6 MMTCO₂ of direct emissions from 2005–2025 possible at net savings (2.3% reduction)
- Blended cement and CemStar[™] account respectively for ~30 and ~7 of the 50 MMTCO₂ in maximum cumulative reductions at estimated abatement costs of ~\$4 and ~\$13 per metric ton; however, their feasibility and overall costs are uncertain.
- Measures costing more than CemStarTM (>\$24/metric ton) appear unlikely to provide large additional reductions in CO₂ emissions.

Implementation Issues for EE Measures in CA Cement

- Large capital costs without downtime
 - > e.g., roller mills: \$96M; high efficiency classifiers, \$35M (aggregate)
- Large capital costs, downtimes, and downtime opportunity costs
 - > e.g., preheater/precalciner kiln: \$83M cap., 26 wk, \$47M opp. (ag.)
- Waste Tires (3 of 6 permitted CA plants burning tires)
 - Public opposition
 - Likely increased CO₂ emissions <u>from kilns</u>
- Blended Cement
 - Current cement standards impeding its wider production
 - Sufficient economic fly ash or steel slag available in CA?
- CemStar[™]
 - High license fee to disappear around 2014 with patent expiration
 - Sufficient economic steel slag available in CA?

Potential Next Steps for CA Cement Analysis

- Consult CA cement industry for better data and projections on CA clinker and cement operations, especially with regard to feasibility of EE measures
- Find and obtain obscure or unpublished data on fuel and electricity consumption by CA cement facilities
- Evaluate different scenarios of phased-in implementation of EE measures
- Assess impact of future fuel and electricity prices on implementation of EE measures and their abatement costs and GHG reduction benefits

Petroleum Refining Overview

- Crude oil is first desalted and then separated into different fractions according to boiling point by distillation.
- The different fractions are further processed (e.g., catalytic cracking, hydrocracking) to produce a wide variety of products (e.g., gasoline, diesel, jet fuel, distillate).
- Contaminants (e.g., sulfur and nitrogen) are removed and captured by dedicated processes (e.g., hydrotreating).
- Refineries use large amounts of natural gas (NG), electricity (purchased), steam (purchased) and byproduct fuels (e.g., refinery gas) for heat, steam, and cogenerated electricity.
- Refineries emit large quantities of CO₂ and other gases from fuel consumption and operations.

CA Petroleum Refining Overview

- 14 refineries "near" SF (4) and LA (10) operated by 8 companies
- Total average daily throughput about 2 million barrels of crude
- CA refineries more energy-intensive than average US refinery because of CA product mix and CA environmental standards
- Refiners among largest industrial users of electricity and NG
- Refiners consumed ~400 TBtu of NG (purchased) and crude byproducts and ~30 TBtu of purchased electricity and steam in 2001.
- ~26 MMTCO₂ from fossil fuels by refineries in 2001 (CCAP)
- ~1300 MW of cogeneration capacity in refineries in 2003 (CEC)
- 9000 GWh in cogeneration in 2003: 60% used, 40% sold (CEC)
- Refineries sell more electricity than they purchase.
 - > Refineries emit CO₂ for sold electricity, like electricity producers.

Key Assumptions in CA Petroleum Refining Analysis

- No new refineries built in CA
- Increasing operable capacity at existing CA refineries (0.5%/y growth)
- Constant relationship between operable capacity and operating capacity (98%, stream day; 94%, calendar day)
- Rising capacity utilization to meet demand (93%; 0.25%/y growth rate)
- Energy intensity and energy consumption of CA refinery operations taken from LBNL-55450 with adjustments for H₂ production based on NREL data
 - Adjustments apparently made energy balance work, but material balance still inconsistent with NG consumption data from CEC
- Cogeneration and purchased electricity based on CEC data
- Intensity of H₂ production increases for cleaner fuels in future.

Major Data Issues and Uncertainties in CA Petroleum Refining Analysis

- "There is no publicly available data on energy consumption in refineries in California" (LBNL-55450, p 29)
- Different sources of data significantly inconsistent
 - Inferred energy and material balances apparently do not work.
- Possible undercounting of NG consumption because NG is tracked as fuel, not feedstock for H₂ production (major energy consumer in CA refineries)
 - ➤ Unrecognized process CO₂ emissions from H₂ production? (not in IPCC)
 - ➤ These process CO₂ emissions inadvertently among combustion CO₂?
- Very few publicly available data for implementation cost and energy saved of EE measures that have quick paybacks
 - Abatement costs for CA refining could not be calculated at present.
 - Only estimates of energy consumption and CO₂ emissions possible

Baseline CA Petroleum Refining Capacity and Throughput

Baseline Fuel Consumption by General Use in CA Petroleum Refining

Baseline Fuel Consumption by Fuel in CA Petroleum Refining

Baseline Steam Consumption by Type in CA Petroleum Refining

Baseline Electricity Consumption by Type in CA Petroleum Refining

Baseline Direct (Fuel + Feedstock) CO₂ Emissions from CA Refining

Baseline Indirect (Steam + Electricity) CO₂ Emissions from CA Refining

Baseline Combined (Direct + Indirect) CO₂ Emissions from CA Refining

CCAP Preliminary Estimates for CA Petroleum Refining from 2005–2025

- Daily throughput to increase 16% from 1.86 to 2.16 million barrels
- Fuel consumption to increase 27% from 443 to 564 TBtu from 2005–2025 for refining processes (+26%), steam (–22%), and cogen. (+52%)
- NG consumption to increase 58% for fuel from 128 to 203 TBtu and 42% for feedstock from 109 to 154 TBtu
- Electricity demand to increase 19% from 7800 to 9300 GWh
- Cogeneration capacity to increase 56% from ~1400 to 2100 MW
- Cogenerated electricity to increase 52% from 9800 to 14900 GWh, with purchased electricity dropping 80% from 1900 to 400 GWh
- CO₂ emissions from all fuels to increase 25% from 29 to 36 MMT
- CO₂ emissions from NG feed to increase 42% from 5.8 to 8.2 MMT
- Direct CO₂ emissions to increase 28% from 35 to 44 MMT
- Indirect CO₂ emissions to decrease 31% from 1.6 to 1 MMT

Potential Next Steps for CA Petroleum Refining Analysis

- Consult CA petroleum industry for better data and projections on CA refining operations, particularly regarding H₂ production from natural gas
- Conduct further research on the costs and energy benefits of EE measures, in consultation with industry and EE experts
- Improve energy and material balances for CA refineries from existing and new data
- Re-evaluate GHG emissions from CA petroleum refineries
- Evaluate the potential of EE measures to reduce GHG emission from CA petroleum refineries

CA Methane and Digester Overview

- 1999 methane emissions from manure management totaled 5.2 MMTCO₂e (1.2% of 1999 gross GHG emissions).
- Manure management represents one of the fastestgrowing sources of GHG emissions in CA
 - > 5.2% average annual growth from 1990 (3.3) to 1999 (5.2)
- Installation of biodigesters can recover manure methane for on-site fuel use or electricity generation, reducing GHG emissions and improving air and water quality
- CA dairy farms have a large potential for biodigester use.

Key Assumptions for CA Dairy Farm Analysis

- Dairy farms with at least 500 cows are candidates for digesters.
- Total number of dairy cows assumed to increase at an average annual rate of 5% through 2010, then remain constant.
- Digesters are installed at 150 dairy farms (out of a projected 1200 large farms in 2010), at a rate of 10 farms per year from 2006-2020.
- Federal production tax credit for renewable power generation is renewed through 2025 at current level. Digesters receive credit for first ten years. Farms do not receive state funding.
- 100% of farms' excess electricity generated on-site is net metered back to grid.
- Price received by farms for net-metered electricity equals price paid by farms to purchase electricity from local grid.
- GHG savings include methane reductions from manure management and CO₂ from displaced grid-generated electricity (impact of digesters on N₂O formation assumed to be zero).
- Cash flows in 2003\$ discounted back to 2005 at 7% annually

Synopsis of Results from CA Dairy Farm Analysis

- Total GHG reductions:
 - ➤ 2010: 0.4 MMTCO₂e
 - ➤ 2020: 1.2 MMTCO₂e
 - ➤ Cumulative (2006-2025): 16 MMTCO₂e
- Total net savings from 2006-2025: \$60 million
- Net savings per metric ton GHG reduced: \$3.70
- The use of digesters can therefore achieve significant GHG reductions at a net savings
- Net metering is key: without it, GHG reductions from biodigesters would likely have a positive cost.

Next Steps for CA Dairy Farm Analysis

- There is significant potential in the state for achieving much larger reductions in methane emissions with digesters: the total methane emissions from large dairy farms are currently about 7.5 MMTCO₂e annually. This is projected to increase to an estimated 9.7 MMTCO₂e in 2010 and the years after.
- Next step is to examine ways to increase reductions from this sector and to encourage implementation. CCAP is currently exploring the following issues:
 - Net metering: availability and eligibility at existing farms, technology and equipment required, costs
 - Transmission requirements and constraints at existing farms
 - Potential programs and incentives for implementation
 - Monitoring and verification requirements

Policy Options and Issues to Reduce Industrial GHG Emissions in CA

- Technology mandates for efficient equipment and processes
 - Overinvestment in "wrong" technologies?
- Cost sharing with public funds to overcome financial barriers
 - Availability of sufficient public funds?
 - Reliance on public funding an impediment to GHG reductions?
 - Dedicated "industry" taxes to create competitive disadvantage?
- Recovery of capital and opportunity costs via state tax code
 - > Tax reductions to provide sufficient funds to spur implementation?
 - Reliance on tax reductions an impediment to GHG reductions?
- Negotiated voluntary agreements
- GHG Cap & Trade Program to encourage implementation
 - Development of industrial GHG baselines without policy
 - Determination of technical potential for GHG reductions by industry
 - Setting the GHG cap across industries
 - Allocating allowances for GHG emissions among industries

Policy Issues and Options for Verifying Industrial GHG Emissions Reductions in CA

- Measuring GHG emissions
 - Output (CEMs) vs. Input (fuels and materials) . . . or both?
 - Calculating, recording, and "memorializing" GHG emissions
- Determining actual GHG emissions reductions
 - Facility baselines for future GHG emissions without policy
 - Indirect GHG emissions (double counting)?
 - Computing "true" GHG reductions relative to baseline (end effects?)
- Verification of GHG emissions reductions
 - Third party (government agency?) to vet GHG emissions reductions
 - Public record vs. confidentiality
- Enforcement
 - Defining material noncompliance
 - Identifying companies in material noncompliance
 - Punishment and penalties for material noncompliance (publicized?)

Conclusions for CA Industrial Analysis

- GHG emissions reductions within the CA industrial sector are likely possible at net savings.
 - > 0.3 MMTCO₂ annually from CA cement
 - > 1.2 MMTCO₂ annually from CA dairy farms
- Additional GHG emissions reductions within the CA industrial sector are likely possible at low abatement costs
 - ➤ 1.8 MMTCO₂ annually from blended cement and CemStarTM in CA cement
- Significant technical and policy issues exist for implementing measures to reduce GHG emissions and verifying the GHG reductions.
- Further study and evaluation of the CA industrial sector are necessary to determine future industrial GHG emissions and the GHG reduction potential.
 - > Petroleum refining, electronics, food processing, and chemicals

Appendix

Additional slides of data and data sources

Big Picture

- CA has world's 6th largest economy.
- Annual CA GHGs: ~430 MMTCO₂e (gross) from 1990–1999
- 1999 GHGs: 363 CO₂; 32 CH₄; 24 N₂O; 10 High-GWP
- 1999 Comb. CO₂ (356): 210 Transport; 92 "Industry"; 8 Utilities
 - ➤ Newer data: 188 (+16, bunker) Transport; 66 Industry; 43 Electricity
- 1999 Proc. CO₂: 6 mostly from cement production (calcination)
- CH₄ (32): 4↓ Energy; 13↑ Agriculture; 15↓ Solid/Water Waste
- Agriculture: 7 Enteric Fermentation; 5↑ Manure Management
- GHG emissions reductions desired to mitigate climate change
 - ➤ In-state electricity largely natural-gas fueled, with relatively few opportunities for additional GHG emissions reductions
 - Potential reduction opportunities in industry and agriculture
- Look to cement, petroleum refining, and dairy farms for GHG reductions?

Data Sources for CA Cement Analysis

- USGS publications for CA clinker/cement production/capacity and US (not CA) fuel/electricity consumption
- Unpublished data for selected fuel/electricity consumption
- Energy Efficiency and Carbon Dioxide Emissions Reduction
 Opportunities in the U.S. Cement Industry (LBNL-44182) for costs,
 technical potential, and fuel/electricity savings of various EE measures
- Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2002 (EPA 2004) for energy, carbon, and CO₂ factors of fuels
- Annual Energy Outlook 2005 (EIA) for projected fuel/electricity costs (2003\$) and CO₂ emissions from average grid electricity
- Publicly available data for other needs (e.g., tire-derived fuel)

Data Sources for CA Petroleum Refining Analysis

- Profile of the Petroleum Refining Industry in California (March 2004; LBNL-55450) for information on US and CA petroleum refining, including potential EE measures
- CEC data for refining capacity and crude intake and consumption of NG and electricity by petroleum refineries
- EIA public databases for petroleum refining capacities and energy statistics
- Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2002 (EPA 2004) for energy, carbon, and CO₂ factors of fuels
- Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming (2001; NREL/TP -570-27637) for information on hydrogen production from natural gas

Sources for Methane Emission Data for CA Dairy Farm Analysis

- USDA National Agricultural Statistics Service for historical inventory of dairy cows and distribution by farm size in CA
- Inventory of California Greenhouse Gas Emissions and Sinks: 1990-1999 (CEC 2002) for typical animal mass and methane emissions from volatile solids factors for California
- Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2002 (EPA 2004) for volatile solids production from cattle for California (US Inventory data was used when data differed from California Inventory, since former source is more recent.)
- PIER program for weighted methane conversion factor
- US EPA AgSTAR Program for information on methane conversion with biodigesters
- CARB for projected future growth rate of dairy farms

Sources for Biodigester, Generation and Electricity Data for CA Dairy Farm Analysis

- PIER program for on-site dairy farm electricity demand in California
- Washington State University for capital and operation and maintenance (O&M) costs of typical manure digester and electric generating unit; capacity, efficiency, and capacity factor of electric generating unit
- California Energy Commission for electricity prices paid by dairy farms and net metering benefit rate
- Annual Energy Outlook 2005 (EIA) for average CO₂ emissions rate from grid-purchased electricity in CA

